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Abstract
A formula expressing explicitly the derivatives of Bessel polynomials of any
degree and for any order in terms of the Bessel polynomials themselves is
proved. Another explicit formula, which expresses the Bessel expansion
coefficients of a general-order derivative of an infinitely differentiable function
in terms of its original Bessel coefficients, is also given. A formula for the
Bessel coefficients of the moments of one single Bessel polynomial of certain
degree is proved. A formula for the Bessel coefficients of the moments of a
general-order derivative of an infinitely differentiable function in terms of its
Bessel coefficients is also obtained. Application of these formulae for solving
ordinary differential equations with varying coefficients, by reducing them to
recurrence relations in the expansion coefficients of the solution, is explained.
An algebraic symbolic approach (using Mathematica) in order to build and solve
recursively for the connection coefficients between Bessel–Bessel polynomials
is described. An explicit formula for these coefficients between Jacobi and
Bessel polynomials is given, of which the ultraspherical polynomial and its
consequences are important special cases. Two analytical formulae for the
connection coefficients between Laguerre–Bessel and Hermite–Bessel are also
developed.

PACS numbers: 02.30.Gp, 02.30.Nw, 02.30.Hq
Mathematics Subject Classification: 42C10, 33A50, 65L50, 65L10

1. Introduction

Techniques for finding approximate solutions for differential equations, based on classical
orthogonal polynomials, are popularly known as spectral methods. Approximating functions

0305-4470/04/338045+19$30.00 © 2004 IOP Publishing Ltd Printed in the UK 8045

http://stacks.iop.org/ja/37/8045


8046 E H Doha and H M Ahmed

in spectral methods are related to polynomial solutions of eigenvalue problems in ordinary
differential equations, known as Sturm–Liouville problems. In the past few decades, there
has been growing interest in this subject. As a matter of fact, spectral methods provide
a competitive alternative to other standard approximation techniques, for a large variety of
problems. Initial applications were concerned with the investigation of periodic solutions of
boundary value problems using trigonometric polynomials. Subsequently, the analysis was
extended to algebraic polynomials. Expansions in orthogonal basis functions were performed,
due to their high accuracy and flexibility in computations. Different basis functions lead
to different spectral approximations; for instance, trigonometric polynomials for periodic
problems, Chebyshev, Legendre, ultraspherical and Jacobi polynomials for non-periodic
problems, Laguerre polynomials for problems on the half line, and Hermite polynomials
for problems on the whole line.

Chebyshev, Legendre and ultraspherical polynomials are examples of three classes of
singular Sturm–Liouville eigenfunctions that have been used in both the solution of boundary
value problems (see, for instance, Ben-Yu (1998), Coutsias et al (1996), Doha (1990, 2000,
2002a, 2002b, 2003a), Doha and Al-kholi (2001), Doha and Abd-Elhameed (2002), Doha and
Helal (1997), Haidvogel and Zang (1979), Siyyam and Syam (1997)) and in computational
fluid dynamics (see Canuto et al (1988), Helal (2001), Voigt et al (1984)). In most of
these applications, formulae relating the expansion coefficients of derivatives appearing in the
differential equation with those of the function itself are used.

Formulae for the expansion coefficients of a general-order derivative of an infinitely
differentiable function in terms of those of the function are available for expansions in
Chebyshev (Karageorghis 1988a), Legendre (Phillips 1988), ultraspherical (Karageorghis and
Phillips 1989, 1992, Doha 1991), Jacobi (Doha 2002a), Laguerre (Doha 2003b) and Hermite
(Doha 2004a) polynomials.

A more general situation which often arises in the numerical solution of differential
equations with polynomial coefficients in spectral and pseudospectral methods is the
evaluation of the expansion coefficients of the moments of high-order derivatives of infinitely
differentiable functions. A formula for the shifted Chebyshev coefficients of the moments of
the general-order derivatives of an infinitely differentiable function is given in Karageorghis
(1988b). Corresponding results for Chebyshev polynomials of the first and second kinds,
Legendre, ultraspherical, Hermite, Laguerre and Jacobi polynomials are given in Doha (1994),
Doha and El-Soubhy (1995), Doha (1998, 2003b, 2004a, 2004b) respectively.

Up to now, and to the best of our knowledge, many formulae corresponding to those
mentioned previously are not known and are traceless in the literature for the Bessel expansions.
This partially motivates our interest in such polynomials. Another motivation is that the
theoretical and numerical analysis of numerous physical and mathematical problems very
often requires the expansion of an arbitrary polynomial or the expansion of an arbitrary
function with its derivatives and moments into a set of orthogonal polynomials. This is, in
particular, true for Bessel polynomials. To be precise, the Bessel polynomials form a set of
orthogonal polynomials on the unit circle in the complex plane. They are important in certain
problems of mathematical physics; for example, they arise in the study of electrical networks
and when the wave equation is considered in spherical coordinates.

The paper is organized as follows. In section 2, we give some relevant properties of
Bessel polynomials. In section 3, we prove a theorem which relates the Bessel expansion
coefficients of the derivatives of a function in terms of its original expansion coefficients. An
explicit expression for the derivatives of Bessel polynomials of any degree and for any order
as a linear combination of suitable Bessel polynomials themselves is also deduced. In section
4, we prove a theorem which gives the Bessel coefficients of the moments of one single Bessel
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polynomial of any degree. Another theorem which expresses the Bessel coefficients of the
moments of a general-order derivative of an infinitely differentiable function in terms of its
Bessel coefficients is proved in section 5. In section 6, we give an application of these theorems
which provides an algebraic symbolic approach (using Mathematica) in order to build and
solve recursively for the connection coefficients between Bessel and different polynomial
systems.

2. Some properties of Bessel polynomials

The classical sets of orthogonal polynomials of Jacobi, Laguerre and Hermite satisfy second-
order differential equations, and also have the property that their derivatives form orthogonal
systems. The Bessel polynomials, a fourth class of orthogonal polynomials with these two
properties, were introduced by Krall and Frink (1949) in connection with the solution of the
wave equation in spherical coordinates.

They define the generalized Bessel polynomial yn(x, a, b) to be the polynomial of degree
n, and with constant term equal to unity, which satisfies the differential equation

x2y ′′(x) + [ax + b]y ′(x) − n(n + a − 1)y(x) = 0, b �= 0, a �= 0,−1,−2, . . . , (1)

where n is a non-negative integer, provided a is not a negative integer or zero, and b is not
zero.

It is easy to see that yn(bx, a, b) is independent of b. Thus it seems preferable to adopt
the notation (Al-Salam 1957)

Y (α)
n (x) = yn(x, α + 2, 2),

so that Y (0)
n (x) = yn(x), the ordinary Bessel polynomial. Y (α)

n (x) satisfy the differential
equation

x2y ′′(x) + [(α + 2)x + 2]y ′(x) − n(n + α + 1)y(x) = 0, α �= −2,−3, . . . . (2)

These polynomials are orthogonal on the unit circle with respect to the weight function

ρα(x) =
∞∑

k=0

�(α + 2)

�(k + α + 1)

(−2

x

)k

,

satisfying the orthogonality relation

1

4π i

∫
C

Y (α)
n (z)Y (α)

m (z)ρα(z) dz = (−1)n+1n!�(α + 2)

(2n + α + 1)�(n + α + 1)
δnm,

where the integration is around the unit circle surrounding the zero point. Y (α)
n (x) may be

generated by using the Rodrigues formula

Y (α)
n (x) = 2−nx−α e2/x Dn[x2n+α e−2/x],

where D ≡ d/dx, and explicitly by the formula

Y (α)
n (x) =

n∑
k=0

(
n

k

)
(n + α + 1)k

(x

2

)k

, (3)

(for more detail see, for instance, Chihara (1978) and Sánchez-Ruiz and Dehesa (1998)).
Several other authors have contributed to the study of Bessel polynomials, among them

are Agarwal (1954), Al-Salam (1957), Carlitz (1957), Evans et al (1993), Grosswald (1978),
Han and Kwon (1991), and Luke (1969, vol 2).
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The following two recurrence relations (which may be found in Koepf and Schmersau
(1998)) are of fundamental importance in developing the present work. These are

2(n + α + 1)(2n + α)Y
(α)
n+1(x) = (2n + α + 1)[(2n + α)(2n + α + 2)x + 2α]Y (α)

n (x)

+ 2n(2n + α + 2)Y
(α)
n−1(x), n � 1, (4)

Y (α)
n (x) = 2(n + α + 1)

(2n + α + 1)(2n + α + 2)(n + 1)
DY

(α)
n+1(x) +

4

(2n + α + 2)(2n + α)
DY (α)

n (x)

+
2n

(n + α)(2n + α)(2n + α + 1)
DY

(α)
n−1(x). (5)

Note that the recurrence relation (4) may be used to generate the Bessel polynomials starting
from Y

(α)
0 (x) = 1 and Y

(α)
1 (x) = α+2

2 x + 1.

Theorem 1. Let f (x) be a function regular (i.e. analytic) in |x − a| � R, where R > 0
and a is any point of the plane. Then f (x) can be expanded in a series of generalized Bessel
polynomials of the form f (x) ∼

∑
cnY

(α)
n (x − a), where

cn = 2n

n!
(2n + α + 1)�(n + α + 1)

∞∑
ν=0

(−2)ν

ν!�(2n + ν + α + 2)
f (n+ν)(a),

and the series is convergent uniformly in |x − a| � R.

Proof. We first suppose that f (x) is regular in |x| � R and prove that f (x) can be expanded
in a series

∑∞
n=0 γnY

(α)
n (x) where

γn = 2n

n!
(2n + α + 1)�(n + α + 1)

∞∑
ν=0

(−2)ν

ν!�(2n + ν + α + 2)
f (n+ν)(0), (6)

and that the series is uniformly convergent in |x| � R. Theorem 1 follows readily when x − a

is written for x.

We have (see Sánchez-Ruiz and Dehesa (1998), equation (2.32))

xn =
n∑

i=0

πniY
(α)
i (x), n � 0, (7)

where

πni =
(

n
i

)
(−1)n−i2n(2i + α + 1)�(i + α + 1)

�(n + i + α + 2)
. (8)

We now substitute for xn from (7) in the Taylor expansion
∑∞

n=0(f
(n)(0)/n!)xn of f (x)

about the origin to get formally the series
∑∞

n=0 γnY
(α)
n (x), where

γn =
∞∑

ν=0

πn+ν,nf
(n+ν)(0)/(n + ν)!.

Hence inserting the value of πn+ν,n from (8), equation (6) follows at once.
In order to prove that the series

∑∞
n=0 γnY

(α)
n (x) is convergent in |x| � R we form the

sum (see Whittaker (1949), chapters II and III)

ωn(R) =
∑

i

|πni |Mi(R),
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where Mi(R) ≡ max|x|=R

∣∣Y (α)
i (x)

∣∣ = ∑i
k=0 2−k

(
i
k

)|(i + α + 1)k|Rk. Applying (8) we obtain

after some reduction

ωn(R) = 2n

n∑
k=0

(
n

k

)
(R/2)k

n−k∑
j=0

(
n − k

j

) ∣∣∣∣ (2j + 2k + α + 1)�(2k + j + α + 1)

�(n + k + j + α + 2)

∣∣∣∣
< |2n + α + 1||�(α + 1)|Rn

n∑
k=0

(
n

k

)
(4/R)k/|�(k + α + 1)|

< |2n + α + 1|RnBn, (9)

where Bn = ∑n
k=0

(
n
k

)
(4/R′)k

k! , R′ = Rµ(α), 0 < µ(α) < minm∈Z+
1
m

|α + m|. Effecting the

transformation y = x(1 + x)−1 on the function x exp(4x/R′) = ∑∞
n=0(4/R′)nxn+1/n! it

follows that

F(y) ≡ (y/(1 − y)) exp{4y/R′(1 − y)} =
∞∑

n=0

Bny
n+1.

This function is regular in |y| < 1; hence by Cauchy’s inequality we have

Bn < K/βn+1, 0 < β < 1,

where K = max|y|=β |F(y)| < ∞. Inserting this in (9) and making n tend to infinity we obtain

λ(R) ≡ lim
n→∞ sup{ωn(R)}1/n � R/β,

and since β can be taken as near 1 as we please we conclude that λ(R) = R. According to
Cannon (1937) (see also Whittaker (1949), p 11), we infer that the series

∑∞
n=0 γnY

(α)
n (x) is

uniformly convergent in |x| � R, as required. �

Remark 1. It is to be noted that the theorem of Nassif (1954, p 408) can be obtained directly
from our theorem by taking α = 0.

Suppose now we are given a regular function f (x) which is formally expanded in an
infinite series of Bessel polynomials,

f (x) =
∞∑

n=0

anY
(α)
n (x), (10)

and for the qth derivatives of f (x),

Dqf (x) =
∞∑

n=0

a(q)
n Y (α)

n (x), a(0)
n = an, (11)

it is possible to derive a recurrence relation involving the Bessel coefficients of successive
derivative of f (x). Let us write

D

[ ∞∑
n=0

a(q−1)
n Y (α)

n (x)

]
=

∞∑
n=0

a(q)
n Y (α)

n (x),

then using identity (5) leads to the recurrence relation

a(q−1)
n = 2(n + α)

n(2n + α − 1)(2n + α)
a

(q)

n−1 +
4

(2n + α + 2)(2n + α)
a(q)

n

+
2(n + 1)

(n + α + 1)(2n + α + 2)(2n + α + 3)
a

(q)

n+1, q � 1, n � 1. (12)
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For computing purpose, we see that this equation is not easy to use, since the coefficients
on the right-hand side are functions of n. No obvious direct way is available for solving this
equation, therefore we resort to the following alternative method that enables one to express
a

(q)
n in terms of the original expansion coefficients ak, k = 0, 1, . . . .

3. The derivatives of Y (α)
n (x) and the relation between the coefficients a(q)

n and an

The main result of this section is to prove the following theorem which expresses explicitly the
Bessel expansion coefficients, a

(q)
n , of a general-order derivative of an infinitely differentiable

function in terms of its original Bessel coefficients, an.

Theorem 2. Suppose that a function f (x) and its qth derivative are formally expanded as in
(10) and (11), then

a(q)
n = 2−q

∞∑
i=0

(n + i + 1)q(n + q + i + α + 1)qMn(α + 2q, α, n + i)an+q+i ,

n � 0, q � 1, (13)

where

Mi(α, β, n) = (−1)n(2i + β + 1)
(α − β)n−i (−n)i(α + n + 1)i

i!(β + i + 1)n+1
. (14)

The following two lemmas are needed to proceed with the proof of the theorem.

Lemma 1 (Sánchez-Ruiz and Dehesa 1998). The connection problem between Bessel
polynomials with different parameters is

Y (α)
n (x) =

n∑
i=0

Mi(α, β, n)Y
(β)

i (x),

where the connection coefficients Mi(α, β, n) are given as in (14).

Lemma 2. The derivatives of Bessel polynomials of any degree in terms of Bessel polynomials
with the same parameter are given by

DqY (α)
n (x) = 2−q(n − q + 1)q(n + α + 1)q

n−q∑
i=0

Mi(α + 2q, α, n − q)Y
(α)
i (x). (15)

Proof. Al-Salam (1957) has proved that

DY (α)
n (x) = 1

2n(n + α + 1)Y
(α+2)
n−1 (x), n � 1, (16)

and therefore

DqY (α)
n (x) = 2−q(n − q + 1)q(n + α + 1)qY

(α+2q)
n−q (x). (17)

From lemma 1 and identity (17), we obtain (15). �

Proof of theorem 2. Now, on differentiating (10) q times and making use of (15), we find

Dqf (x) =
∞∑

n=q

anD
qY (α)

n (x)

= 2−q

∞∑
n=q

an(n − q + 1)q(n + α + 1)q

n−q∑
i=0

Mi(α + 2q, α, n − q)Y
(α)
i (x), (18)
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expanding (18) and collecting similar terms, we obtain (13) which completes the proof of
theorem 2. �

Remark 2. It is to be noted here that the formula for a
(q)
n given by (13) is the exact solution of

the difference equation (12), and it also worth noting that based on theorem 1, one can show
that the series (13) is convergent.

4. Bessel coefficients of the moments of one single Bessel polynomial of any degree

For the evaluation of Bessel coefficients of the moments of higher order derivatives of an
infinitely differentiable function, the following theorem is needed.

Theorem 3

xmY
(α)
j (x) =

2m∑
n=0

amn(j)Y
(α)
j+m−n(x), m � 0, j � 0, (19)

where

amn(j) = (−1)j−n2mm!j !(2j + 2m − 2n + α + 1)�(j + m − n + α + 1)

(j + m − n)!(2m − n)!�(j + α + 1)�(2j + 2m − n + α + 2)

×
min(j+m−n,j)∑
k=max(0,j−n)

(
j + m − n

k

)
(−1)k�(j + k + α + 1)�(j + 2m − n − k + 1)

(j − k)!(n + k − j)!
.

(20)

Proof. We use the induction principle to prove this theorem. In view of recurrence relation

xY
(α)
j (x) = 2(j + α + 1)

(2j + α + 1)(2j + α + 2)
Y

(α)
j+1(x)

− 2α

(2j + α)(2j + α + 2)
Y

(α)
j (x) − 2j

(2j + α)(2j + α + 1)
Y

(α)
j−1(x), j � 0,

we may write

xY
(α)
j (x) = a10(j)Y

(α)
j+1(x) + a11(j)Y

(α)
j (x) + a12(j)Y

(α)
j−1(x), (21)

and this in turn shows that (19) is true for m = 1. Proceeding by induction, assuming that (19)
is valid for m, we want to prove that

xm+1Y
(α)
j (x) =

2m+2∑
n=0

am+1,n(j)Y
(α)
j+m−n+1(x). (22)

From (21) and assuming the validity for m, we have

xm+1Y
(α)
j (x) =

2m∑
n=0

amn(j)
[
a10(j + m − n)Y

(α)
j+m−n+1(x) + a11(j + m − n)Y

(α)
j+m−n(x)

+ a12(j + m − n)Y
(α)
j+m−n−1(x)

]
.

Collecting similar terms, we get

xm+1Y
(α)
j (x) = am0(j)a10(j + m)Y

(α)
j+m+1(x) + [am1(j)a10(j + m − 1)

+ am0(j)a11(j + m)]Y (α)
j+m(x) +

2m∑
n=2

[amn(j)a10(j + m − n)
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+ am,n−1(j)a11(j + m − n + 1) + am,n−2(j)a12(j + m − n + 2)]Y (α)
j+m−n+1(x)

+ [am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)]Y (α)
j−m(x)

+ am,2m(j)a12(j − m)Y
(α)
j−m−1(x). (23)

It can be easily shown that

am+1,0(j) = am0(j)a10(j + m),

am+1,1(j) = am1(j)a10(j + m − 1) + am0(j)a11(j + m),

am+1,n(j) = amn(j)a10(j + m − n) + am,n−1(j)a11(j + m − n + 1)

+ am,n−2(j)a12(j + m − n + 2),

am+1,2m+1(j) = am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1),

am+1,2m+2(j) = am,2m(j)a12(j − m),

and accordingly, formula (23) becomes

xm+1Y
(α)
j (x) =

2m+2∑
n=0

am+1,n(j)Y
(α)
j+m−n+1(x),

which completes the induction and proves the theorem. �

Corollary 1. It can be easily shown that the expansion coefficients amn(j) of theorem 3 satisfy
the recurrence relation

amn(j) =
2∑

k=0

am−1,n+k−2(j)a1,2−k(j + m − n − k + 1), n = 0, 1, . . . , 2m, (24)

where

a1k(j) =




2(j + α + 1)

(2j + α + 1)(2j + α + 2)
, k = 0,

− 2α

(2j + α)(2j + α + 2)
, k = 1,

− 2j

(2j + α)(2j + α + 1)
, k = 2,

a00(j) = 1 (25)

with

am−1,−�(j) = 0, ∀� > 0, am−1,r (j) = 0, r = 2m − 1, 2m.

Corollary 2. One can show that

xmY
(α)
j (x) =

j+m∑
n=0

am,j+m−n(j)Y (α)
n (x), j � 0, m � 0, (26)

and

xm =
m∑

n=0

am,m−n(0)Y (α)
n (x), m � 0, (27)

where

am,m−n(0) =
(

m

n

)
(−1)m−n2m(2n + α + 1)�(n + α + 1)

�(m + n + α + 2)
. (28)

Formula (27) is in complete agreement with Sánchez-Ruiz and Dehesa (1998) and Zarzo
et al (1997).
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5. Bessel coefficients of the moments of a general-order derivative of an infinitely
differentiable function

In this section, we state and prove a theorem which relates the Bessel coefficients of the
moments of a general-order derivative of an infinitely differentiable function in terms of its
Bessel coefficients.

Theorem 4. Assume that f (x), Dqf (x) and x�Y
(α)
j (x) have the Bessel expansions (10), (11)

and (19) respectively, and assume also that

x�

( ∞∑
i=0

a
(q)

i Y
(α)
i (x)

)
=

∞∑
i=0

b
q,�

i Y
(α)
i (x) = I q,�, (29)

then the connection coefficients b
q,�

i are given by

b
q,�

i =




�−1∑
k=0

a�,k+�−i (k)a
(q)

k +
i∑

k=0

a�,k+2�−i (k + �)a
(q)

k+�, 0 � i � �,

�−1∑
k=i−�

a�,k+�−i (k)a
(q)

k +
i∑

k=0

a�,k+2�−i (k + �)a
(q)

k+�, � + 1 � i � 2� − 1,

i∑
k=i−2�

a�,k+2�−i (k + �)a
(q)

k+�, i � 2�,

(30)

where the coefficients amn(k) are as defined in (20).

Proof. Equations (11), (19) and (29) give

I q,� =
∞∑

k=0

a
(q)

k

2�∑
j=0

a�,j (k)Y
(α)
k+�−j (x). (31)

By letting i = k + � − j, then (31) may be written in the form

I q,� =
�−1∑
k=0

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)Y
(α)
i (x) +

∞∑
k=�

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)Y
(α)
i (x)

=
∑

1

+
∑

2

, (32)

where

∑
1

=
�−1∑
k=0

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)Y
(α)
i (x),

∑
2

=
∞∑

k=�

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)Y
(α)
i (x).

Considering
∑

1 first,

∑
1

=
�−1∑
k=0

a
(q)

k

−1∑
i=k−�

a�,k+�−i (k)Y
(α)
i (x) +

�−1∑
k=0

a
(q)

k

k+�∑
i=0

a�,k+�−i (k)Y
(α)
i (x)

=
∑

11

+
∑

12

. (33)
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Clearly,

∑
11

=
�−1∑
k=0

a
(q)

k

−1∑
i=k−�

a�,k+�−i (k)Y
(α)
i (x) =

�−1∑
k=0

a
(q)

k

�−k∑
i=1

a�,k+�+i (k)Y
(α)
−i (x),

hence ∑
11

= 0. (34)

Now,

∑
12

=
�−1∑
k=0

a
(q)

k

k+�∑
i=0

a�,k+�−i (k)Y
(α)
i (x)

=
�∑

i=0

�−1∑
k=0

a
(q)

k a�,k+�−i (k)Y
(α)
i (x) +

2�−1∑
i=�+1

�−1∑
k=i−�

a
(q)

k a�,k+�−i (k)Y
(α)
i (x),

hence ∑
12

=
2�−1∑
i=0

�−1∑
k=max(0,i−�)

a
(q)

k a�,k+�−i (k)Y
(α)
i (x). (35)

Substitution of (34) and (35) into (33) yields

∑
1

=
2�−1∑
i=0

�−1∑
k=max(0,i−�)

a
(q)

k a�,k+�−i (k)Y
(α)
i (x). (36)

If when considering
∑

2, one takes k + � instead of k, then it is not difficult to show that

∑
2

=
∞∑
i=0

i∑
k=max(0,i−2�)

a
(q)

k+�a�,k+2�−i (k + �)Y
(α)
i (x). (37)

Substitution of (36) and (37) into (32) gives the required results of (30) and completes the
proof of theorem 4. �

6. Recurrence relations for connection coefficients between Bessel and different
polynomial systems

Let f (x) have the Bessel expansion (10), and assume that it satisfies the linear non-
homogeneous differential equation of order n

n∑
i=0

pi(x)f (i)(x) = g(x), (38)

where p0, p1, . . . , pn �= 0 are polynomials in x, and the coefficients of Bessel series of the
function g(x) are known, then formulae (13), (19) and (30) enable one to construct in view of
equation (38) the linear recurrence relation of order r,

r∑
j=0

αj (k)ak+j = β(k), k � 0, (39)

where α0, α1, . . . , αr (α0 �= 0, αr �= 0) are polynomials of the variable k.
In this section, we consider the problem of determining the connection coefficients

between different polynomial systems. An interesting question is how to transform the
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Fourier coefficients of a given polynomial corresponding to an assigned orthogonal basis, into
the coefficients of another basis orthogonal with respect to a different weight function. The
aim is to determine the so-called connection coefficients of the expansion of any element of
the first basis in terms of the elements of the second basis. Suppose V is a vector space of all
polynomials over the real or complex numbers and Vm is the subspace of polynomials of
degree less than or equal to m. Suppose p0(x), p1(x), p2(x), . . . is a sequence of polynomials
such that pn(x) is of exact degree n; let q0(x), q1(x), q2(x), . . . be another such sequence.
Clearly, these sequences form a basis for V . It is also evident that p0(x), p1(x), . . . , pm(x)

and q0(x), q1(x), . . . , qm(x) give two bases for Vm. While working with finite-dimensional
vector spaces, it is often necessary to find the matrix that transforms a basis of a given space
to another basis. This means that one is interested in the connection coefficients ai(n) that
satisfy

qn(ax + b) =
n∑

i=0

ai(n)pi(x), (40)

where a and b are constants. The choice of pn(x) and qn(ax + b) depends on the situation.
For example, suppose

pn(x) = xn, qn(x) = x(x − 1) · · · (x − n + 1) = (−1)n(−x)n = �(x + 1)

�(x − n + 1)
,

then the connection coefficients ai(n) are Stirling numbers of the first kind. If the role of these
pn(x) and qn(x) are interchanged, then we get Stirling numbers of the second kind. These
numbers are useful in some combinatorial polynomials (see Abramowitz and Stegun (1970)
pp 824–5).

The connection coefficients between many of the classical orthogonal polynomial systems
have been determined by different kinds of methods (see, e.g., Szegö (1985), Rainville (1960)
and Andrews et al (1999)). The aim of this section is to describe a simple procedure (based on
the results of theorem 4) in order to find recurrence relations, sometimes easy to solve, between
the coefficients ai(n) when pi(x) = Y

(α)
i (x) and qi(x) = Y

(β)

i (x). This gives an alternative
and different way to be compared to the approaches of Askey and Gasper (1971), Ronveaux
et al (1995, 1996), Area et al (1998), Godoy et al (1997), Koepf and Schmersau (1998),
Lewanowicz (2002), Lewanowicz and Woźny (2001), Lewanowicz et al (2000), and Sánchez-
Ruiz and Dehesa (1998). A nonrecursive way to approach the problem in the case of classical
orthogonal polynomials of a discrete variable can be found in Gasper (1974). Moreover, other
authors have considered the problem from a recursive point of view (see Koepf and Schmersau
(1998)), or even in the classical discrete and q-analogues (cf, Àlvarez-Nodarse et al (1998)
and Àlvarez-Nodarse and Ronveaux (1996)). Since the connection coefficients ai(n) depend
on two parameters i and n, the most interesting recurrence relations are those which leave one
of the parameters fixed. In the cases when the order of the resulting recurrence relation is 1, it
defines a hypergeometric term which can be given explicitly in terms of Pochhammer symbol
(a)k = �(a+k)

�(a)
.

6.1. The Bessel–Bessel connection problem

The link between Y (α)
n (ax + b) and Y

(β)

i (x) given by (40) can easily be replaced by a linear
relation involving only Y

(β)

i (x) using the Bessel differential equation, namely

[(ax + b)2D2 + a[(α + 2)(ax + b) + 2]D − a2n(n + α + 1)]Y (α)
n (ax + b) = 0, (41)
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by substituting

Y (α)
n (ax + b) =

n∑
i=0

ai(n)Y
(β)

i (x), (42)

with an+1(n) = an+2(n) = · · · = 0, and by virtue of formula (29), equation (41) takes the form

a2I 2,2 + 2abI 2,1 + b2I 2,0 + a2(α + 2)I 1,1 + [ab(α + 2) + 2]I 1,0 − a2n(n + α + 1)I 0,0 = 0,

or

a2b
2,2
i + 2abb

2,1
i + b2b

2,0
i + a2(α + 2)b

1,1
i + [ab(α + 2) + 2]b1,0

i − a2n(n + α + 1)b
0,0
i = 0.

By making use of formulae (20) and (30), we obtain

a2n(n + α + 1)ai(n) − 2a2(α + 2)(i + α)

(2i + α − 1)(2i + α)
a

(1)
i−1(n)

+ a

[
−b(α + 2) +

2(−4i2 − 4i(α + 1) + (a − 1)α(α + 2))

(2i + α)(2i + α + 2)

]
a

(1)
i (n)

+
2a2(i + 1)(α + 2)

(2i + α + 2)2
a

(1)
i+1(n) − 4a2(i + α − 1)2

(2i + α − 3)4
a

(2)
i−2(n)

+
4a(i + α)(2aα − b(2i + α − 2)(2i + α + 2))

(2i + α − 2)3(2i + α + 2)
a

(2)
i−1(n)

+

[
−b2 +

4abα

(2i + α)(2i + α + 2)
+

4a2(2i(i + 1) + α + 2iα − α2)

(2i + α − 1)2(2i + α + 2)2

]
a

(2)
i (n)

+
4a(i + 1)(2aα − b(2i + α)(2i + α + 4))

(2i + α)(2i + α + 2)3
a

(2)
i+1(n)

− 4a2(i + 1)(i + 2)

(2i + α + 2)4
a

(2)
i+2(n) = 0, i � 0, (43)

using formula (13) with (43)—and after some manipulation obtain the following recurrence
relation,

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0,

i = n − 1, n − 2, . . . , 0, (44)

where

δi0 = a2(n − i)(i + n + α + 1)(i + β + 1)4

(2i + β + 1)4
,

δi1 = −a(i + 1)(i + β + 2)3

(2i + β + 3)2

[
1 +

b

2
(α + 2i + 2)

− a(β(2i + 1) + 2(3i + 1) + 4n(n + α + 1) + (2 − 2i + β)(α + 1))

(2i + β + 2)(2i + β + 6)

]
,

δi2 = (i + 1)2(β + i + 3)2

[
−b2

4
+

a((β − α + 2)b − 2)

(β + i + 4)(β + i + 6)

+
a2(2i2 + 2(β + 5)i + (3 + β)(3α − β + 2) + 6n(n + α + 1))

(β + i + 3)2(β + i + 6)2

]
,

δi3 = −a(i + 1)3(i + β + 4)

(2i + β + 6)2

[
1 − b

2
(2i + 2β − α + 8)

+
a(2(β − α + 2)i − (4 + β)(3α − 2β − 4) − 4n(n + α + 1))

(β + i + 3)2(β + i + 6)2

]
,



Recurrences and explicit formulae for the expansion and connection coefficients 8057

δi4 = a2(i + 1)4(i + β + n + 5)(n − i + α − β − 4)

(2i + β + 6)4
,

with an+s(n) = 0, s = 1, 2, 3, and an(n) = an(n+α+1)n
(n+β+1)n

. The solution of (44) is

ai(n) = (−a)i(−n)i(n + α + 1)i

(i + β + 1)i i!

n−i∑
k=0

ak(−n + i)k(n + α + i + 1)k

k!(2i + β + 2)k

× 2F0

[−k,−2i − k − β − 1
–

;− b

2a

]
, i = 0, 1, . . . , n. (45)

Corollary 3. In the connection problem

Y (α)
n (ax) =

n∑
i=0

ai(n)Y
(β)

i (x), (46)

the coefficients ai(n) are given by

ai(n) = (−a)i(−n)i(n + α + 1)i

(i + β + 1)i i!
2F1

[−n + i, n + α + i + 1
2i + β + 2

; a

]
, i = 0, 1, . . . , n. (47)

In the particular case a = 1, and if we use the Chu–Vandemonde formula

2F1

[−n, c

d
; 1

]
= (d − c)n

(d)n
,

we find that the expansion coefficients (47) take the form of Mi(α, β, n) given by formula (14).

Remark 3. The two connected problems considered by Godoy et al (1997, sections 2.1, 2.2,
pp 267–8) can be obtained from our problem as two direct special cases.

6.2. The Jacobi–Bessel connection problem

In this problem, we consider the usual standardization of the Jacobi polynomials

P (γ,δ)
n (1) = �(n + γ + 1)

n!�(γ + 1)
, P (γ,δ)

n (−1) = (−1)n�(n + δ + 1)

n!�(δ + 1)
,

and for convenience to weight the ultraspherical polynomials so that

C(γ )
n (x) = n!�(γ + 1)

�(n + γ + 1)
P (γ−1/2,γ−1/2)

n (x),

which gives C
(γ )
n (1) = 1 (n = 0, 1, 2, . . .); this is not the usual standardization, but

has the desirable properties that C(0)
n (x) = Tn(x), C

(1/2)
n (x) = Pn(x), and C(1)

n (x) =
(1/(n + 1))Un(x), where Tn(x), Un(x) and Pn(x) are Chebyshev polynomials of the first
and second kinds and Legendre polynomials, respectively.

Now let P
(γ,δ)
n (ax + b) have the expansion

P (γ,δ)
n (ax + b) =

n∑
i=0

ai(n)Y
(α)
i (x), (48)

where P
(γ,δ)
n (ax + b) satisfy the differential equation

[(1 − (ax + b)2)D2 + a[δ − γ − (µ + 1)(ax + b)]D + a2n(µ + n)]P (γ,δ)
n (ax + b) = 0, (49)

where µ = γ + δ + 1, then the coefficients ai(n) satisfy the fourth-order recurrence relation

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0,

i = n − 1, n − 2, . . . , 0, (50)
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where

δi0 = a2(n − i)(i + n + µ + 1)(i + α + 1)4

4(2i + α + 1)4
,

δi1 = a(i + 1)(i + α + 2)3

4(2i + α + 3)2

[(
1 − b

2

)
(µ + 2i + 1) + (i + γ + 1)

+
a[α(2i + 1) + 2(3i + 1) + 4n(n + µ) + (2 − 2i + α)µ]

(2i + α + 2)(2i + α + 6)

]
,

δi2 = 1

4
(i + 1)2(α + i + 3)2

[(
1 − b2

4

)
− a((α − µ + 3)(1 − b) − α + 2γ − 2)

(α + 2i + 4)(α + 2i + 6)

+
a2[2i2 + 2(α + 5)i + (3 + α)(3µ − α − 1) + 6n(n + µ)]

(α + 2i + 3)2(α + 2i + 6)2

]
,

δi3 = a(i + 1)3(i + α + 4)

4(2i + α + 6)2

[
−

(
1 − b

2

)
(2i + 2α − µ + 9) + (i + α − γ + 4)

+
a(2(α − µ + 3)i − (4 + α)(3µ − 2α − 7) − 4n(n + µ))

(α + 2i + 3)2(α + 2i + 6)2

]
,

δi4 = −a2(i + 1)4(i + α + n + 5)(i + α − n − µ + 5)

4(2i + α + 6)4
,

with an+s(n) = 0, s = 1, 2, 3 and an(n) = an(n+µ)n
n!(n+α+1)n

. The solution of (50) is

ai(n) = (γ + 1)n(−a)i

(i + α + 1)i i!n!

(−n)i(n + µ)i

(γ + 1)i

n−i∑
k=0

ak

k!

(−n + i)k(n + µ + i)k

(γ + i + 1)k(2i + α + 2)k

× 2F0

[
−k,−2i − k − α − 1; 1 − b

2a

]
, i = 0, 1, . . . , n. (51)

Corollary 4. In the connection problem

P (γ,δ)
n (x) =

n∑
i=0

ai(n)Y
(α)
i (x), (52)

the coefficients ai(n) are given by

ai(n) = (n + µ)i(γ + 1)n

i!(n − i)!(γ + 1)i(i + α + 1)i

n−i∑
k=0

1

k!

(−n + i)k(n + µ + i)k

(γ + i + 1)k(2i + α + 2)k

× 2F0

[
−k,−k − 2i − α − 1; 1

2

]
, i = 0, 1, . . . , n. (53)

Corollary 5. The link between ultraspherical–Bessel connection problem is given by

C(ν)
n (x) =

n∑
i=0

ai(n)Y
(α)
i (x), (54)

where the coefficients ai(n) are given by

ai(n) = n!(n + 2ν)i

i!(n − i)!(ν + 1/2)i(i + α + 1)i

n−i∑
k=0

1

k!

(−n + i)k(n + 2ν + i)k

(ν + i + 1/2)k(2i + α + 2)k

× 2F0

[−k,−k − 2i − α − 1
–

; 1

2

]
, i = 0, 1, . . . , n. (55)
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Remark 4. It is worth noting that all the connection problems between the three orthogonal
polynomials, Chebyshev polynomials of the first and second kinds and Legendre polynomials
and Bessel polynomials can be easily deduced by taking ν = 0, 1, 1/2 in relations (54) and
(55), respectively.

6.3. The Laguerre–Bessel connection problem

In this problem

L(γ )
n (ax + b) =

n∑
i=0

ai(n)Y
(α)
i (x), (56)

where L
(γ )
n (ax + b) are Laguerre polynomials, which satisfy the differential equation

[(ax + b)D2 + a(1 + γ − (ax + b))D + a2n]L(γ )
n (ax + b) = 0. (57)

The coefficients ai(n) satisfy the recurrence relation

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0,

i = n − 1, n − 2, . . . , 0, (58)

where

δi0 = a2(n − i)(i + α + 1)4

(2i + α + 1)4
,

δi1 = −a(i + 1)(i + α + 2)3

2(2i + α + 3)2

[
(b − i − γ − 1) +

2a(2i + 4n − 2 − α)

(2i + α + 2)(2i + α + 6)

]
,

δi2 = 1

4
(i + 1)2(α + i + 3)2

[
b − 2a(2b + α − 2γ + 2)

(α + 2i + 4)(α + 2i + 6)
+

12a2(α + 2n + 3)

(α + 2i + 3)2(α + 2i + 6)2

]
,

δi3 = a(i + 1)3(i + α + 4)

2(2i + α + 6)2

[
−(i + α + b − γ + 4) +

2a(2i + 3α + 4n + 12)

(α + 2i + 4)(α + 2i + 8)

]
,

δi4 = a2(i + 1)4(i + α + n + 5)

(2i + α + 6)4
,

with an+s(n) = 0, s = 1, 2, 3 and an(n) = an(−2)n

n!(n+α+1)n
. The solution of (58) is

ai(n) = (2a)i

(i + α + 1)i i!

(−n)i(γ + 1)n

n!(γ + 1)i

n−i∑
k=0

(−2a)k

k!(2i + α + 2)k

(−(n − i))k

(γ + i + 1)k

× 2F0

[−k,−2i − k − α − 1
–

;− b

2a

]
, i = 0, 1, . . . , n. (59)

Corollary 6. In the connection problem

L(γ )
n (ax) =

n∑
i=0

ai(n)Y
(α)
i (x),

the coefficients ai(n) are given by

ai(n) = (2a)i

(i + α + 1)i i!

(−n)i(γ + 1)n

n!(γ + 1)i
1F2

[ −(n − i)

2i + α + 2, γ + i + 1
;−2a

]
,

i = 0, 1, . . . , n. (60)
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6.4. The Hermite–Bessel connection problem

In this problem

Hn(ax + b) =
n∑

i=0

ai(n)Y
(α)
i (x),

where Hn(x) are Hermite polynomials, which satisfy the differential equation

[D2 − 2a(ax + b)D + 2a2n]Hn(ax + b) = 0. (61)

The coefficients ai(n) satisfy the recurrence relation

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0,

i = n − 1, n − 2, . . . , 0, (62)

where

δi0 = 2a2(i + α + 1)4(n − i)

(2i + α + 1)5
,

δi1 = −a(i + 1)(i + α + 2)3

[
b

(2i + α + 3)3
− 2a(4n − 2i + α + 2)

(2i + α + 2)5

]
,

δi2 = 1

4
(i + 1)2(i + α + 3)2

[
1

(2i + α + 5)
− 8ab

(2i + α + 4)3
+

24a2(2n + α + 3)

(2i + α + 3)5

]
,

δi3 = a(i + α + 4)(i + 1)3

[
− b

(2i + α + 5)3
+

2a(4n + 2i + 3α + 12)

(2i + α + 4)5

]
,

δi4 = 2a2(i + 1)4(n + i + α + 5)

(2i + α + 5)5
,

with an+s(n) = 0, s = 1, 2, 3 and an(n) = an22n

(n+α+1)n
. The solution of (62) is

ai(n) = (2a)in!

(i + α + 1)i i!

[ n−i
2 ]∑

k=0

(−1)k2n−2kbn−2k−i

k!(n − 2k − i)!
1F1

[−(n − 2k − i)

2i + α + 2
; 2a

b

]
,

i = 0, 1, . . . , n. (63)

Corollary 7. In the connection problem

Hn(ax) =
n∑

i=0

ai(n)Y
(α)
i (x),

the coefficients ai(n) are given by

ai(n) = (−1)n−in!

(i + α + 1)i i!

[ n−i
2 ]∑

k=0

(−1)k

k!(n − 2k − i)!

(4a)n−2k

(2i + α + 2)n−2k−i

, i = 0, 1, . . . , n. (64)

Remark 5. The expansions and connection coefficients in series of ordinary Bessel
polynomials yn(x) can be obtained directly from those of the generalized Bessel polynomials
Y (α)

n (x), by taking α = 0.
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Remark 6. It is to be noted that one of our goals is to emphasize the systematic character and
simplicity of our algorithm, which allows one to implement it in any computer algebra (here
the Mathematica (1999)) symbolic language used.

To end this paper, we wish to report that this work deals with formulae associated with the
Bessel coefficients for the moments of a general-order derivative of differentiable functions
and with the connection coefficients between Bessel–Bessel, Jacobi–Bessel, Laguerre–Bessel
and Hermite–Bessel and other combinations with different parameters. These formulae can be
used to facilitate greatly the setting up of the algebraic systems to be obtained by applying the
spectral methods for solving differential equations with polynomial coefficients of any order.
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